Physics Practice test

Modified True/False

Indicate whether the statement is true or false. Iffalse, change the identified word or phrase to make the statement true.

1. Distance is measured along the actual path taken.
2. The average velocity of an object on a round-trip journey is $0 \mathrm{~m} / \mathrm{s}$.

Multiple Choice

Identify the choice that best completes the statement or answers the question.
3. A bus travels at a constant velocity of $+26 \mathrm{~m} / \mathrm{s}$. The driver applies the brakes as the vehicle approaches a yellow light, reducing the bus's velocity to $+12 \mathrm{~m} / \mathrm{s}$. If the average acceleration of the bus during the braking is $-5 \mathrm{~m} / \mathrm{s}^{2}$, how long does the driver apply the brakes?
a. 0.4 s
b. 2.4 s
c. 2.8 s
d. 5.2 s
4. If a car accelerates from rest at a constant $+6.5 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the car to reach a velocity of $+30 \mathrm{~m} / \mathrm{s}$?
a. 0.2 s
b. 4.6 s
c. 30 s
d. 195 s
5. A car accelerates uniformly at $+2 \mathrm{~m} / \mathrm{s}^{2}$ for 3 s . If the car's initial velocity was $12 \mathrm{~m} / \mathrm{s}$, how far did the car travel in 3 s ?
a. +9 m
b. +25 m
c. +36 m
d. +45 m
\qquad 6. A rock released from rest falls freely off a cliff and accelerates at $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ under the influence of gravity. What is the average velocity of the object after 2 s have passed?
a. $-19.6 \mathrm{~m} / \mathrm{s}$
b. $-9.8 \mathrm{~m} / \mathrm{s}$
c. $-4.9 \mathrm{~m} / \mathrm{s}$
d. $-2 \mathrm{~m} / \mathrm{s}$
\qquad 7. After accelerating at $+4.8 \mathrm{~m} / \mathrm{s}^{2}$ for 1.6 s , a vehicle's velocity was $+16 \mathrm{~m} / \mathrm{s}$. What was the vehicle's initial velocity?
a. $\quad+3.33 \mathrm{~m} / \mathrm{s}$
b. $+8.32 \mathrm{~m} / \mathrm{s}$
c. $+23.68 \mathrm{~m} / \mathrm{s}$
d. $+25.6 \mathrm{~m} / \mathrm{s}$
8. A tennis ball is thrown upward with an initial velocity of $+18 \mathrm{~m} / \mathrm{s}$. What is the tennis ball's velocity after 4 s ? Assume the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.
a. $-21.2 \mathrm{~m} / \mathrm{s}$
b. $+21.2 \mathrm{~m} / \mathrm{s}$
c. $+57.2 \mathrm{~m} / \mathrm{s}$
d. $+72 \mathrm{~m} / \mathrm{s}$
\qquad 9. A roller coaster at an amusement park starts at rest and is in free fall for 1.5 s . What would be the roller coaster's velocity after 1.5 s ? Assume the upward direction is positive and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.
a. $-14.7 \mathrm{~m} / \mathrm{s}$
c. $-0.15 \mathrm{~m} / \mathrm{s}$
b. $-6.5 \mathrm{~m} / \mathrm{s}$
d. $+14.7 \mathrm{~m} / \mathrm{s}$
10. A construction worker accidentally drops a hammer from a high scaffold. What is the velocity of the hammer after it has fallen for 5 s? Assume the upward direction is positive and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.
a. $-49 \mathrm{~m} / \mathrm{s}$
b. $-9.8 \mathrm{~m} / \mathrm{s}$
c. $-1.96 \mathrm{~m} / \mathrm{s}$
d. $-0.51 \mathrm{~m} / \mathrm{s}$
11. A supersonic jet flying at $+150 \mathrm{~m} / \mathrm{s}$ experiences uniform acceleration at the rate of $+23 \mathrm{~m} / \mathrm{s}^{2}$ for 20 s . What is the jet's final velocity?
a. $+173 \mathrm{~m} / \mathrm{s}$
b. $+310 \mathrm{~m} / \mathrm{s}$
c. $+460 \mathrm{~m} / \mathrm{s}$
d. $+610 \mathrm{~m} / \mathrm{s}$
12. A car with a velocity of $+24 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at a rate of $+1.8 \mathrm{~m} / \mathrm{s}^{2}$ for 7 s . What is the car's final velocity?
a. $-11.4 \mathrm{~m} / \mathrm{s}$
b. $+25.8 \mathrm{~m} / \mathrm{s}$
c. $+27.8 \mathrm{~m} / \mathrm{s}$
d. $+36.6 \mathrm{~m} / \mathrm{s}$
13. The acceleration due to gravity on Mars is about one third that on Earth. How would a ball dropped by an astronaut on Mars compare with a ball dropped from the same height on Earth?
a. Both balls would have the same velocity.
b. Both balls would have the same acceleration.
c. The ball dropped on Mars would have a lesser velocity.
d. The ball dropped on Mars would have a greater velocity.
14. A bird endures tremendous acceleration as it digs insects out of a tree. Its beak moves at a velocity of $+5.7 \mathrm{~m} / \mathrm{s}$ but is reduced to $0 \mathrm{~m} / \mathrm{s}$ within 0.006 s by the impact with the tree. What acceleration does the bird's brain withstand?
a. $\quad-950 \mathrm{~m} / \mathrm{s}^{2}$
b. $+0.001 \mathrm{~m} / \mathrm{s}^{2}$
c. $+0.034 \mathrm{~m} / \mathrm{s}^{2}$
d. $+950 \mathrm{~m} / \mathrm{s}^{2}$
15. A boy on a bike starts from rest and reaches a velocity of $20.2 \mathrm{~m} / \mathrm{s}$ [N] in 4.2 s . What is the boy's average acceleration?
a. $\quad 4.8 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
b. $\quad 0.2 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
c. $84.84 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
d. $24.4 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
16. An object goes from $+50 \mathrm{~m} / \mathrm{s}$ to $+30 \mathrm{~m} / \mathrm{s}$ in 4 s . What is the average acceleration of the object?
a. $\quad-0.2 \mathrm{~m} / \mathrm{s}^{2}$
b. $-5 \mathrm{~m} / \mathrm{s}^{2}$
c. $+5 \mathrm{~m} / \mathrm{s}^{2}$
d. $+20 \mathrm{~m} / \mathrm{s}^{2}$
17. A motorcycle accelerates at a constant rate from rest, reaching $+45 \mathrm{~m} / \mathrm{s}$ in 5 s . What is the motorcycle's average acceleration?
a. $+0.11 \mathrm{~m} / \mathrm{s}^{2}$
b. $+9 \mathrm{~m} / \mathrm{s}^{2}$
c. $+45 \mathrm{~m} / \mathrm{s}^{2}$
d. $+225 \mathrm{~m} / \mathrm{s}^{2}$
18. A cheetah is resting under a tree when it sees a gazelle. The cheetah reaches a velocity of $+28 \mathrm{~m} / \mathrm{s}$ in 5 s in pursuit of the gazelle. What is the cheetah's average acceleration?
a. $+0.18 \mathrm{~m} / \mathrm{s}^{2}$
b. $+5.6 \mathrm{~m} / \mathrm{s}^{2}$
c. $+28 \mathrm{~m} / \mathrm{s}^{2}$
d. $+140 \mathrm{~m} / \mathrm{s}^{2}$
19. A salmon swimming at a velocity of $0.45 \mathrm{~m} / \mathrm{s}$ [E] sees a shrimp and increases its velocity to $2.15 \mathrm{~m} / \mathrm{s}$ [E] in 0.6 s . What is the salmon's average acceleration?
a. $\quad 1.02 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$
b. $2.83 \mathrm{~m} / \mathrm{s}^{2}$ [E]
c. $3.58 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$
d. $4.33 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$
20. A race car's velocity increases from $+6 \mathrm{~m} / \mathrm{s}$ to $+42 \mathrm{~m} / \mathrm{s}$ over a 4 s time interval. What is its average acceleration?
a. $\quad+7 \mathrm{~m} / \mathrm{s}^{2}$
b. $+9 \mathrm{~m} / \mathrm{s}^{2}$
c. $+10.5 \mathrm{~m} / \mathrm{s}^{2}$
d. $+11.5 \mathrm{~m} / \mathrm{s}^{2}$
21. A snowboarder is travelling downhill at a velocity of $+6 \mathrm{~m} / \mathrm{s}$. Her speed increases to $+18 \mathrm{~m} / \mathrm{s}$ in 3 s as the ski hill gets steeper. What is the snowboarder's average acceleration?
a. $+2 \mathrm{~m} / \mathrm{s}^{2}$
b. $+4 \mathrm{~m} / \mathrm{s}^{2}$
c. $+6 \mathrm{~m} / \mathrm{s}^{2}$
d. $+18 \mathrm{~m} / \mathrm{s}^{2}$
22. A race car heading east on a racetrack at $46 \mathrm{~m} / \mathrm{s}$ slows at a constant rate to a velocity of $24 \mathrm{~m} / \mathrm{s}$ over 10 s . What is the car's average acceleration?
a. $\quad-22 \mathrm{~m} / \mathrm{s}^{2}$
b. $-2.4 \mathrm{~m} / \mathrm{s}^{2}$
c. $-2.2 \mathrm{~m} / \mathrm{s}^{2}$
d. $+2.2 \mathrm{~m} / \mathrm{s}^{2}$
23. The velocity of a truck is increased uniformly from $25 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ to $35 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ in 4 s . What is the truck's average acceleration in the 4 s interval?
a. $\quad 0.4 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
b. $2.5 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
c. $8.75 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
d. $\quad 10 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$
24. A vehicle travelling at a velocity of $+35 \mathrm{~m} / \mathrm{s}$ is brought to rest in 0.6 s . What is the average acceleration of the vehicle during this time interval?
a. $\quad-58 \mathrm{~m} / \mathrm{s}^{2}$
b. $-21 \mathrm{~m} / \mathrm{s}^{2}$
c. $+21 \mathrm{~m} / \mathrm{s}^{2}$
d. $+58 \mathrm{~m} / \mathrm{s}^{2}$
25. What is the average acceleration that causes a car's velocity to change from $+85 \mathrm{~m} / \mathrm{s}$ to $+40 \mathrm{~m} / \mathrm{s}$ in a 6 s period?
a. $-7.5 \mathrm{~m} / \mathrm{s}^{2}$
b. $+7.5 \mathrm{~m} / \mathrm{s}^{2}$
c. $+10.4 \mathrm{~m} / \mathrm{s}^{2}$
d. $+20.8 \mathrm{~m} / \mathrm{s}^{2}$
26. A baseball pitcher throws a fastball with a velocity of $42 \mathrm{~m} / \mathrm{s}$ [W]. The batter hits the baseball, and the ball travels at a velocity $54 \mathrm{~m} / \mathrm{s}$ [E]. What was the average acceleration of the ball during the 0.002 s when it was in contact with the bat?
a. $\quad 6000 \mathrm{~m} / \mathrm{s}^{2}$ [E]
b. $42000 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$
c. $48000 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$
d. $54000 \mathrm{~m} / \mathrm{s}^{2}$ [E]
27. Three cars in the Grand Prix start off at the same time and in the same direction. Car X goes from 0 m / s to $+18 \mathrm{~m} / \mathrm{s}$ in 4 s ; car Y goes from $0 \mathrm{~m} / \mathrm{s}$ to $+22 \mathrm{~m} / \mathrm{s}$ in 3.5 s ; and car Z goes from $0 \mathrm{~m} / \mathrm{s}$ to +27 m / s in 6 s . Which of the following ranks the three cars from greatest acceleration to least acceleration?

Greatest Acceleration \rightarrow Least Acceleration

a. Car X Car Z Car Y

b. Car Y Car X Car Z
c. Car Y Car Z Car X
d. Car Z Car Y Car X
a. a
b. b
c. c
d. d
28. What is the average acceleration of a car that slows down from $+50 \mathrm{~km} / \mathrm{h}$ to $+30 \mathrm{~km} / \mathrm{h}$ as it enters a school zone in 3.8 s ?
a. $\quad-5.26 \mathrm{~m} / \mathrm{s}^{2}$
b. $-1.46 \mathrm{~m} / \mathrm{s}^{2}$
c. $+1.46 \mathrm{~m} / \mathrm{s}^{2}$
d. $+5.85 \mathrm{~m} / \mathrm{s}^{2}$
29. Which of the following describes an object with negative acceleration?
I. An object is going in the negative direction and is speeding up.
II. An object is going in the positive direction and is slowing down.
III. An object is changing from moving in the negative direction to the positive direction.
a. I. and II. only
c. II. and III. only
b. I. and III. only
d. I., II., and III.
30. A fighter jet's velocity goes from $+140 \mathrm{~km} / \mathrm{h}$ to a complete stop in 2 s . What is the average acceleration of the fighter jet?
a. $+19.4 \mathrm{~m} / \mathrm{s}^{2}$
b. $-19.4 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad-70 \mathrm{~km} / \mathrm{h}^{2}$
d. $-140 \mathrm{~km} / \mathrm{h}^{2}$
31. A tennis player throws a ball upward with a velocity of $+5 \mathrm{~m} / \mathrm{s}$. To what maximum height does the ball reach?
a. +0.78 m
b. +1.3 m
c. +4.9 m
d. +5.1 m

Use the following velocity-time graphs to answer the next two questions.

32. Which of the above graphs shows both positive velocity and positive acceleration?
a. graph A
c. graph C
b. graph B
d. graph D
33. Which of the following statements correctly compares graph A and graph E shown above?
I. They show motion in opposite directions.
II. They show motion with constant velocity.
III. They show motion with zero acceleration.
a. I. and II. only
c. II. and III. only
b. I. and III. only
d. I., II., and III.

Use the following information about data collected from a lab to answer the next question.
As a marble rolls across a classroom floor, a student measures the marble's velocity every second and records the data in the table shown below.

Time (s) Velocity (m/s)
$0 \quad+0$
$1+3$
$2+6$
$3+9$
$4 \quad+12$
34. Using the data shown above, what is the average acceleration of the marble during the 4 s interval?
a. $+0.3 \mathrm{~m} / \mathrm{s}^{2}$
b. $+1 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad+3 \mathrm{~m} / \mathrm{s}^{2}$
d. $+12 \mathrm{~m} / \mathrm{s}^{2}$
35. Which of the following are shown by the velocity-time graph below?

I. The acceleration is positive.
II. The acceleration and velocity are in opposite directions.
III. The motion begins with a positive velocity, slows down, and then stops.
a. I. and II. only
c. II. and III. only
b. I. and III. only
d. I., II., and III.
36. Which of the following describes the motion shown by the velocity-time graph below?

I. increased speed
II. positive velocity
III. constant, positive acceleration
a. I. and II. only
c. II. and III. only
b. I. and III. only
d. I., II., and III.

Use the following position-time graph to answer the next question.

37. Which of the following velocity-time graphs represents the same motion as the position-time graph shown above?

a. Graph I. only
c. Graphs I. and II. only
b. Graph II. only
d. Graphs I., II., and III.

Use the following graph showing the relationship between velocity and time of travel for four cars travelling in a straight-line motion to answer the next two questions.

38. Which car represented above has the greatest positive acceleration?
a. A
c. C
b. B
d. D
39. Which car represented above is travelling at constant deceleration?
a. A
c. C
b. B
d. D

Use the following velocity-time graph showing the motion of an object to answer the next three questions.

40. Which of the following compares the velocity and the acceleration of the object in the graph shown above during time intervals 0 to t_{1} and t_{5} to t_{6} ?

Time Interval 0 to t_{1}
a. Velocity is positive. Acceleration is positive. Velocity is positive. Acceleration is positive.
b. Velocity is positive. Acceleration is positive. Velocity is negative. Acceleration is negative.
c. Velocity is positive. Acceleration is positive. Velocity is negative. Acceleration is positive.
d. Velocity is positive. Acceleration is negat- Velocity is negative. Acceleration is positive.
ive.
a. a
b. b
c. c
d. d
41. Which of the following compares the acceleration and the motion of the object in the graph shown above during time intervals t_{3} to t_{4} and t_{5} to t_{6} ?

Time Interval t_{3} to $t_{4} \quad$ Time Interval t_{5} to t_{6}
a. Acceleration is negative. Object is slowing down.
b. Acceleration is negative. Object is speeding up.
c. Acceleration is negative. Object is speeding up.
d. Acceleration is negative. Object is slowing down.

Acceleration is negative. Object is slowing down.
Acceleration is positive. Object is slowing down.
Acceleration is negative. Object is slowing down.
Acceleration is positive. Object is speeding up.
a. a
b. b
c. c
d. d
42. During which time interval in the graph shown above is the object moving backward at a constant velocity?
a. t_{2} to t_{3}
b. t_{3} to t_{4}
c. t_{4} to t_{5}
d. t_{5} to t_{6}

Use the following velocity-time graphs showing the motion of objects X and Y to answer the next question.

43. Which of the following accurately compares objects X and Y in the graphs shown above?
I. Both objects have uniform motion.
II. Both objects have zero acceleration.
III. Object X has a negative velocity, while Object Y has a positive velocity.
a. I. and II. only
c. II. and III. only
b. I. and III. only
d. I., II., and III.

Use the following velocity-time graphs showing the motion of two objects to answer the next question.

44. Which of the following describes the motion of the two objects in the graphs shown above?
a. Both objects are speeding up.
b. Both objects are slowing down.
c. Both objects are moving with a negative velocity.
d. Both objects are moving with a negative acceleration.
45. Using the velocity-time graph shown below, what is the average acceleration during the time interval 3 s to 7 s ?

a. $\quad-13.3 \mathrm{~m} / \mathrm{s}^{2}$
b. $-10 \mathrm{~m} / \mathrm{s}^{2}$
c. $-5.7 \mathrm{~m} / \mathrm{s}^{2}$
d. $-5 \mathrm{~m} / \mathrm{s}^{2}$
46. What does the following velocity-time graph illustrate about acceleration?

a. The acceleration is zero.
c. The acceleration is negative.
b. The acceleration is positive.
d. The acceleration is changing.
47. A car was moving when an observer started monitoring it, and the car's velocity had not changed when the observations finished. Which of the following velocity-time graphs describes the car moving steadily to the observer's left?

a. Graph A
c. Graph C
b. Graph B
d. Graph D
48. The velocity-time graph shown below represents the motion of a ball. Which of the following correctly compares the acceleration of the ball during the time interval 0 to 2 s and 4 to 6 s ?

a. The ball has zero acceleration during both time intervals.
b. The ball has positive acceleration during both time intervals.
c. The ball has zero acceleration between 0 to 2 s and positive acceleration between 4 to 6 s .
d. The ball has negative acceleration between 0 to 2 s and positive acceleration between 4 to 6 s .

Matching

Match the term with the appropriate scenario. Each term may be used more than once.
a. zero acceleration
c. negative acceleration
b. positive acceleration
49. a cat sitting on a fence
50. a space shuttle taking off
51. a motorcycle travelling at constant velocity
52. a ball's acceleration in the opposite direction to its velocity
53. a car travelling at a velocity of $50 \mathrm{~km} / \mathrm{h}$ [E] with an acceleration $10 \mathrm{~km} / \mathrm{h}^{2}$ [E]

Match the segment of the velocity-time graph with the appropriate description. Each segment of the velocity-time graph may be used more than once.

54. speeding up
55. slope $=-2 \mathrm{~m} / \mathrm{s}^{2}$
56. uniform motion
57. zero acceleration
58. positive acceleration
59. acceleration $=3 \mathrm{~m} / \mathrm{s}^{2}$ [backward]

Match the segment of the velocity-time graph with the appropriate description. Each segment of the velocity-time graph may be used more than once.

60. speeding up
61. constant velocity
62. negative acceleration and speeding up
63. positive velocity and zero acceleration
64. positive velocity and positive acceleration
65. negative velocity and negative acceleration

Match the description with the appropriate term. Each description may be used only once.
a. rate of change in velocity
b. moving at constant velocity
c. slope of this graph represents acceleration
d. acceleration that is opposite to the direction of motion
66. acceleration
67. deceleration
68. zero acceleration
69. velocity-time graph

Short Answer

70. A boy throws a stone upward at $+15 \mathrm{~m} / \mathrm{s}$. What is the stone's velocity after 2 s ? Assume the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.
71. A train accelerates from rest with an acceleration of $+5 \mathrm{~m} / \mathrm{s}^{2}$ in 10 s . What is the train's velocity at 10 s ?
72. A truck that has an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ [E] slows down uniformly to $6 \mathrm{~m} / \mathrm{s}$ [E] in 4 s . What is the average acceleration of the truck during the 4 s interval?
73. The velocity-time graph shown below represents the motion of an object.

Describe the motion of the object for the different time intervals. For each of the following time intervals (0 to $2 \mathrm{~s} ; 2$ to $6 \mathrm{~s} ; 6$ to 8 s ; and 8 to 12 s) make reference to:
a) the direction of the object's motion (positive or negative direction)
b) the velocity of the object
c) the acceleration of the object
d) the changes in the object's speed (speeding up, slowing down, or having constant speed)
74. The velocity-time graph shown below represents the motion of a car moving in a straight line north.

a) What is the velocity of the car at 7 s ?
b) During what time interval is the acceleration of the car the greatest?
c) What is the acceleration of the car in the time interval from 4 to 9 s?
d) Describe the motion, velocity, and acceleration of the car during the time interval 9 to 13 s .
75. A car is travelling at a constant speed of $60 \mathrm{~km} / \mathrm{h}$. As it approaches a school zone, it slows down to $30 \mathrm{~km} / \mathrm{h}$. Draw a velocity-time graph to represent the motion of the car.

Use the following speed-time graph representing the motion of an object to answer the next question.

76. What is the total distance travelled by the object shown above during the first 3 s ?
77. The diagrams below show the motion of three cars. Explain why all three scenarios show that the car is accelerating.

Scenario 1

Scenario 2

Scenario 3

78. A truck is travelling at $26 \mathrm{~m} / \mathrm{s}$ [E] on a straight highway. The driver sees an accident on the highway and starts to slow down. The following data table shows the velocity of the truck as it is brought to a complete stop.

Time (s)	Velocity (m/s [E])
0	26
1	18
2	12
3	8
4	3
5	0

a) Plot the data points on the velocity-time graph below, and draw a best-fit line.

b) What is the average acceleration of the car during the time interval 1 to 4 s?
c) Describe the velocity and the acceleration of the car during the 5 s time interval.
79. The following four tables represent the velocity of an object during a 4 s time interval. Describe the direction of motion, the velocity, and the acceleration of the object in each of the following scenarios.
a) Scenario 1

Time (s)	Velocity (m/s)
0	0
1	4
2	8
3	12
4	16

b) Scenario 2

Time (s) Velocity (m/s)

0	-16
1	-12
2	-8
3	-4
4	0

c) Scenario 3

Time (s) Velocity (m/s)
0
16
112
$2 \quad 8$
34
40
d) Scenario 4

Time (s)	Velocity (m/s)
0	0
1	-4
2	-8
3	-12
4	-16

Problem

80. The velocity-time graph below shows the motion of a child on a trampoline. Describe the motion of the child.

81. In each situation described below, identify whether the object or person has positive acceleration, negative acceleration, or zero acceleration.
a) a rocket taking off from the ground
b) a car parked in front of a parking meter
c) a motorcycle slowing down as it approaches a yellow light
d) a racehorse starting a race
e) a vehicle travelling at a constant velocity on a highway

Use the following velocity-time graph showing the motion of a vehicle to answer the next six questions.

82. Using the graph shown above, determine the following.
a) What is the velocity of the vehicle at 10 s ?
b) What is the velocity of the vehicle at 40 s ?
c) What is the velocity of the vehicle at 70 s ?
d) What is the velocity of the vehicle at 90 s ?
e) What is the velocity of the vehicle at 110 s?
83. Using the graph shown above, determine the acceleration for each time interval in the table below.

> 0 to 25 s
> 25 to 50 s
> 50 to 65 s
> 65 to 80 s
> 80 to 105 s
> 105 to 125 s

Time Interval Acceleration
84. During which time interval in the above table was the acceleration the greatest?
85. Use the above graph to answer the following.
a) Describe the vehicle's motion during the time interval 25 to 50 s .
b) Describe the vehicle's motion between 65 s and 80 s .
86. According to the above graph, when did the vehicle have negative acceleration?
87. According to the above graph, how far did the vehicle travel during the first 20 s ?
88. Complete the following table by describing the velocity, acceleration, and motion for each time interval in the velocity-time graph shown below.
a) For velocity, indicate whether it is positive or negative.
b) For acceleration, indicate whether it is positive, negative, or zero.
c) For motion, indicate whether the object is speeding up, is slowing down, or has uniform motion.

Time Period 0 to $t_{1} \quad t_{1}$ to $t_{2} \quad t_{2}$ to t_{3}
a) Velocity
b) Acceleration
c) Motion
89. Complete the following table by describing the velocity, acceleration, and motion for each time interval in the velocity-time graph shown below.
a) For velocity, indicate whether it is positive or negative.
b) For acceleration, indicate whether it is positive, negative, or zero.
c) For motion, indicate whether the object is speeding up, is slowing down, or has uniform motion.

Time Period $\quad 0$ to $t_{1} \quad t_{1}$ to $t_{2} \quad t_{2}$ to t_{3}
a) Velocity
b) Acceleration
c) Motion
90. The velocity-time graph shown below shows the motion of a coin tossed in the air. Use the graph to answer the following questions.
a) Which part of the graph shows the coin at its highest point?
b) When does the coin have zero velocity?
c) Describe the speed of the coin on its way up.
d) Describe the speed of the coin on its way down.
e) What direction is the acceleration when the coin is moving up and when the coin is moving down?
f) Use the graph to summarize the motion of the coin that is tossed upward and then falls back down to the thrower.

Physics Practice test

Answer Section

MODIFIED TRUE/FALSE

1. ANS: T

PTS: 1
LOC: C6-1
MSC: K
2. ANS: T

LOC: C6-1
MSC: U

PTS: 1 DIF: Average
KEY: velocity

MULTIPLE CHOICE

3. ANS: C PTS: 1

TOP: Calculating Acceleration MSC: U
4. ANS: B

PTS: 1
TOP: Calculating Acceleration MSC: U
5. ANS: D PTS: 1

TOP: Calculating Acceleration MSC: U
6. ANS: A

PTS: 1
TOP: Calculating Acceleration MSC: U
7. ANS: B PTS: 1

TOP: Calculating Acceleration MSC: U
8. ANS: A

PTS: 1
TOP: Calculating Acceleration MSC: U
9. ANS: A PTS: 1 TOP: Calculating Acceleration MSC: U
10. ANS: A

PTS: 1
TOP: Calculating Acceleration MSC: U

DIF: Average LOC: C7-3
KEY: time |acceleration
DIF: Average LOC: C7-3
KEY: time | velocity | acceleration
DIF: Difficult LOC: C7-3
KEY: displacement | acceleration | initial velocity
DIF: Average LOC: C7-3
KEY: velocity \mid acceleration \mid gravity
DIF: Average LOC: C7-3
KEY: initial velocity | acceleration
DIF: Average LOC: C7-3
KEY: final velocity | acceleration | gravity
DIF: Average LOC: C7-3
KEY: final velocity \mid acceleration \mid gravity
DIF: Average LOC: C7-3
KEY: final velocity \mid acceleration \mid gravity

32. ANS: B
30:
TOP: Calculating Acceleration
MSC: U

MSC: U

MATCHING

TOP: Calculating Acceleration MSC: H
64. ANS: A

PTS: 1
TOP: Calculating Acceleration MSC: H
65. ANS: D PTS: 1

TOP: Calculating Acceleration
MSC: H
66. ANS: A

PTS: 1
TOP: Describing Acceleration
67. ANS: D PTS: 1

TOP: Describing Acceleration
MSC: K
68. ANS: B PTS: 1

TOP: Describing Acceleration
69. ANS: C PTS: 1

TOP: Describing Acceleration MSC: K

KEY: velocity-time graph \mid velocity \mid acceleration
DIF: Difficult LOC: C7-2
KEY: velocity-time graph | velocity \mid acceleration
DIF: Difficult LOC: C7-2
KEY: velocity-time graph | velocity | acceleration

DIF: Easy LOC: C7-1
KEY: acceleration MSC: K
DIF: Easy LOC: C7-1
KEY: acceleration | deceleration
DIF: Easy LOC: C7-1
KEY: acceleration MSC: K
DIF: Easy LOC: C7-3
KEY: acceleration | velocity-time graph

SHORT ANSWER

70. ANS:
$-4.6 \mathrm{~m} / \mathrm{s}$
PTS: 1 DIF: Average
LOC: C7-3
TOP: Calculating Acceleration
KEY: final velocity | acceleration
MSC: U
71. ANS:
$+50 \mathrm{~m} / \mathrm{s}$
PTS: 1 DIF: Average LOC: C7-3
MSC: U
72. ANS:
$2.5 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$
PTS: 1 DIF: Average LOC: C7-3 TOP: Calculating Acceleration
KEY: acceleration MSC: U
73. ANS:

Time Interval (0 to 2 s):
a) Object starts from rest and increases speed in the positive direction.
b) positive velocity
c) positive acceleration
d) speeding up

Time Interval (2 to 6 s):
a) Object travels in the positive direction.
b) positive velocity
c) zero acceleration
d) uniform motion (constant speed)

Time Interval (6 to 8 s):
a) Object still travels in the positive direction.
b) positive velocity
c) negative acceleration
d) slowing down

Time Interval (8 to 12 s):
a) Object has come to a complete stop (is at rest).
b) zero velocity
c) zero acceleration
d) object is at rest

PTS: 12 DIF: Average LOC: C7-2
TOP: Calculating Acceleration
KEY: velocity \mid acceleration | velocity-time graph MSC: U
74. ANS:
a) $40 \mathrm{~m} / \mathrm{s}$ (1 Point)
b) 0 to 1 s (1 Point)
c) $-20 \mathrm{~m} / \mathrm{s}^{2}$ (1 Point)
d) car is speeding up, negative velocity, negative acceleration (3 Points)

PTS: 6 DIF: a) Average, b) Average, c) Average, d) Difficult
LOC: C7-2, 3 TOP: Calculating Acceleration
KEY: velocity \mid acceleration | velocity-time graph
MSC: a) U, b) U, c) U, d) H
75. ANS:

PTS: 1 DIF: Average LOC: C7-2
TOP: Calculating Acceleration
KEY: velocity \mid acceleration \mid velocity-time graph
MSC: U
76. ANS:
22.5 m

PTS: 1
DIF: Difficult
LOC: C7-2
TOP: Calculating Acceleration KEY: speed-time graph | distance

MSC: H
77. ANS:
i) Scenario 1: The car is accelerating because its velocity is increasing.
ii) Scenario 2: The car is accelerating because its direction is changing as it turns. This means that its velocity is changing even though its speed stays constant.
iii) Scenario 3: The car is accelerating because its velocity is decreasing. This represents negative acceleration.

PTS: 3 DIF: Average LOC: C7-2 TOP: Calculating Acceleration
KEY: acceleration MSC: U
78. ANS:
a) The best-fit line should have a negative slope intersecting the y-axis at 26 and the x-axis at 5. (3

Points)
b) $-5 \mathrm{~m} / \mathrm{s}^{2}$ (1 Point)
c) positive velocity, negative acceleration (1 Point)

PTS: 5 DIF: Average LOC: C7-2, 3 TOP: Calculating Acceleration
KEY: acceleration | velocity | velocity-time graph MSC: U
79. ANS:
a) positive direction, positive velocity, speeding up, positive acceleration (3 Points)
b) negative direction, negative velocity, slowing down, positive acceleration (3 Points)
c) positive direction, positive velocity, slowing down, negative acceleration (3 Points)
d) negative direction, negative velocity, speeding up, negative acceleration (3 Points)
PTS: 12
DIF: Difficult
LOC: C7-2
TOP: Calculating Acceleration
KEY: velocity | acceleration
MSC: H

PROBLEM

80. ANS:

The child was initially moving upward but his speed decreased steadily as gravity slowed him down. The upward motion stopped for an instant at the peak of the jump. Then, the child moved downward at increasing speed as gravity pulled him back down to Earth.

PTS: 2 DIF: Difficult LOC: C7-2 TOP: Calculating Acceleration
KEY: velocity-time graph | acceleration MSC: H
81. ANS:
a) positive acceleration (1 Point)
b) zero acceleration (1 Point)
c) negative acceleration (1 Point)
d) positive acceleration (1 Point)
e) zero acceleration (1 Point)
PTS: $5 \quad$ DIF: Average LOC: C7-2 TOP: Describing Acceleration

KEY: acceleration MSC: U
82. ANS:
a) $4 \mathrm{~m} / \mathrm{s}$ (1 Point)
b) $10 \mathrm{~m} / \mathrm{s}$ (1 Point)
c) $0 \mathrm{~m} / \mathrm{s}$ (1 Point)
d) $2 \mathrm{~m} / \mathrm{s}$ (1 Point)
e) $5 \mathrm{~m} / \mathrm{s}$ (1 Point)

PTS: 5 DIF: Average LOC: C7-2 TOP: Calculating Acceleration
KEY: velocity MSC: U
83. ANS:

Time Interval	Acceleration
0 to 25 s	$+0.4 \mathrm{~m} / \mathrm{s}^{2}$
25 to 50 s	$0 \mathrm{~m} / \mathrm{s}^{2}$
50 to 65 s	$-0.66 \mathrm{~m} / \mathrm{s}^{2}$
65 to 80 s	$0 \mathrm{~m} / \mathrm{s}^{2}$
80 to 105 s	$+0.2 \mathrm{~m} / \mathrm{s}^{2}$
105 to 125 s	$0 \mathrm{~m} / \mathrm{s}^{2}$

PTS: 6 DIF: Average LOC: C7-3 TOP: Calculating Acceleration
KEY: acceleration MSC: U
84. ANS:

50 to 65 s
PTS: 1 DIF: Average LOC: C7-3 TOP: Calculating Acceleration
KEY: acceleration MSC: U
85. ANS:
a) The vehicle has zero acceleration and is travelling at a constant velocity. (1 Point)
b) The vehicle is at rest or not moving. (1 Point)

PTS: 2 DIF: Average LOC: C7-2 TOP: Calculating Acceleration
KEY: acceleration
MSC: U
86. ANS:

50 to 65 s
PTS: 1 DIF: Average LOC: C7-2 TOP: Calculating Acceleration
KEY: acceleration MSC: U
87. ANS:

80 m
PTS: 1 DIF: Difficult LOC: C7-3 TOP: Calculating Acceleration
KEY: displacement MSC: H
88. ANS:

Time Period 0 to $t_{1} \quad t_{1}$ to $t_{2} \quad t_{2}$ to t_{3}
a) Velocity positive positive positive
b) Acceleration positive zero negative
c) Motion speeding up uniform motion slowing down

PTS: 9 DIF: Difficult LOC: C7-2 TOP: Calculating Acceleration
KEY: velocity | acceleration
MSC: H
89. ANS:
Time Period 0 to $t_{1} \quad t_{1}$ to $t_{2} \quad t_{2}$ to t_{3}
a) Velocity negative negative negative
b) Acceleration negative zero positive
c) Motion speeding up uniform motion slowing down

| PTS: 9 | DIF: | Difficult | LOC: C7-2 |
| :--- | :--- | :--- | :--- | TOP: Calculating Acceleration

90. ANS:
a) The coin is at its highest point when the graph intersects the x-axis. (1 Point)
b) The coin has zero velocity when it is at the highest point of the throw for an instant since the direction of the coin is changing. (1 Point)
c) The speed of the coin decreases on its way up. (1 Point)
d) The speed of the coin increases on its way down. (1 Point)
e) The acceleration is always toward the ground. (1 Point)
f) The coin was initially moving upward, but the speed decreased steadily as gravity slowed it down. The upward motion stopped for a moment at the peak of the throw. The coin then moved downward at increasing speed as gravity pulled it back down to the thrower. (3 Points)

PTS: 8 DIF: a) Average, b) Average, c) Average, d) Average, e) Average, f) Difficult
LOC: C7-2 TOP: Calculating Acceleration KEY: velocity | speed | acceleration
MSC: a) U, b) U, c) U, d) U, e) U, f) H

